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Abstract. We analyze a controllable generation of maximally entangled mixed states of a circuit containing
two-coupled superconducting charge qubits. Each qubit is based on a Cooper pair box connected to a
reservoir electrode through a Josephson junction. Illustrative variational calculations were performed to
demonstrate the effect on the two-qubits entanglement. At sufficiently deviation between the Josephson
energies of the qubits and/or strong coupling regime, maximally entangled mixed states at certain instances
of time is synthesized. We show that entanglement has an interesting subsequent time evolution, including
the sudden death effect. This enables us to completely characterize the phenomenon of entanglement
sharing in the coupling of two superconducting charge qubits, a system of both theoretical and experimental
interest.

PACS. 42.50.Ct Quantum description of interaction of light and matter; related experiments – 03.65.Ud
Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.) – 03.65.Yz
Decoherence; open systems; quantum statistical methods

1 Introduction

There have been remarkable advances in the quest to build
a superconductor-based quantum information processor in
recent years [1,2] and one of the greatest scientific and en-
gineering challenges of this decade is the realization of a
quantum computer. In this context, a solid-state system
is highly desirable because of its compactness, scalability
and compatibility with existing semiconductor technology.
One of the physical realizations of a solid-state qubit is
provided by a Cooper pair box which is a small super-
conducting island connected to a large superconducting
electrode, a reservoir, through a Josephson junction [3].
Superconducting charge qubits (Cooper pair boxes) are a
promising technology for the realization of quantum com-
putation on a large scale [4–8].

Using simultaneous measurement and state tomogra-
phy, entanglement between two solid-state qubits has been
demonstrated [9]. The results demonstrate a high degree
of unitary control of the system, indicating that larger im-
plementations are within reach. These results are promis-
ing for future solid-state quantum computing. For con-
ventional fault-tolerant quantum computing, the quantum
states should have a high level of purity, preferably being
as close to a pure state as possible. When the qubit is cou-
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pled to an environment it is subject to decoherence, which
will typically result in a completely mixed state [10]. How-
ever, a qubit initially in a completely mixed state can be
purified by measurement. Therefore, it is desirable on both
fundamental and practical grounds to study maximin en-
tangled state generation and entanglement dynamics in
a time-dependent sense. One of the next major steps to-
wards building a Josephson junction quantum computer
prototype will be the demonstration of controllable cou-
pling between the qubits. At this end, it seems that a
quantitative link between the degree of disentanglement
and the amount of the energy transferred between the
system of interest and its environment is still missing. In-
vestigation of entanglement control in such systems would
therefore be an important contribution to the present suite
of experimental controls.

In recent years quantum entanglement has found many
exciting applications that have considerable bearing on
the emerging fields of quantum information and quantum
computing [11–15]. Moreover, besides this fundamental as-
pect, the interest in entangled states has been recently re-
newed because their properties lie at the heart of many
potential applications. The generation and reconstruction
of quantum states were extensively studied in the past
theoretically and experimentally [16–20]. More fundamen-
tally, decoherence processes due to the interaction with
internal or external noises and entanglement decay in a
time-dependent sense have been studied in many distinct
cases [12,21,23–27]. More recently, Almeida et al. [14]
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have devised an elegantly clean way to confirm the ex-
istence of so-called entanglement sudden death, that is,
entanglement terminates completely after a finite inter-
val, without a smoothly diminishing long-time tail.

This paper examines the generation of maximally en-
tangled mixed state of two-coupled Josephson charge
qubits using a common pulse gate. We present various
examples in order to monitor different regimes of syn-
thizing the maximally entangled mixed states and entan-
glement dynamics. In principle, by proper adjustment of
the initial state parameters, we can always find suitable
values of characteristic energies of the Cooper pairs and
coupling energy which can be used to suppress the decay
of entanglement. This analysis is carried out with gener-
alized time-dependent density matrix, yielding a general-
ized dynamical two-qubit model. As we are going to show,
we may take this advantage to increase time intervals for
maximally entangled states caused by the strong coupling
regime.

This paper is organized as follows: in Section 2, we
will describe the Hamiltonian of the system of interest,
and obtain the explicit analytical solution of the master
equation describing the dynamics of two qubits in the pres-
ence of phase decoherence. In Section 3, by calculating the
occupation probabilities of the two qubits, we show that
it is possible to generate the maximally entangled mixed
states of the system in different situations. In Section 4,
we discuss the entanglement of the system by virtue of the
concurrence in the absence or presence of the decoherence.
Finally, Section 5 presents the conclusions and an outlook.

2 Two coupled charge qubits

Here, we briefly discuss the general formalism to char-
acterize the dynamics of two-coupled superconducting
charge qubits (Cooper pair boxes connected to a reser-
voir electrode through a Josephson junction). For a more
detailed discussion we refer the reader to references [6,30].
We consider two charge qubits and couple them by means
of a miniature on-chip capacitor. The read-out of each
qubit, in this case, is done similar to the single qubit read-
out and connect a probe electrode to each qubit. External
controls that we have in the circuit are the dc probe volt-
ages Vb1 and Vb2 , dc gate voltages Vg1 and Vg2 , and pulse
gate voltage Vp (see Fig. 1). The information on the final
states of the qubits after manipulation comes from the
pulse-induced currents measured in the probes. By doing
routine current– voltage–gate voltage measurements, we
can estimate the capacitances. We then perform state ma-
nipulation and demonstrate qubit–qubit interaction. The
Hamiltonian of the system in the charge representation
can be written as

Ĥ = �

∞∑

n1=0

∞∑

n2=0

η1(n1, n2)Ŝ11 − EJ1

2

(
Ŝ12 + Ŝ34

)

− EJ2

2

(
Ŝ13 + Ŝ24

)
+ h.c., (1)

Fig. 1. (Color online) Illustration of two capacitively coupled
Josephson charge qubits. The circuit consists of two charge
qubits that are coupled by an on-chip capacitor Cm [6,28].

where Ŝ11 = |n1, n2〉〈n1, n2|, Ŝ12 = |n1, n2〉〈n1 + 1, n2|,
Ŝ13 = |n1, n2〉〈n1, n2+1|, Ŝ34 = |n1, n2+1〉〈n1+1, n2+1|,
and Ŝ24 = |n1 + 1, n2〉〈n1 + 1, n2 + 1|. The param-
eter η1(n1, n2) = Ec1 (ng1 − n1)

2 + Ec2 (ng2 − n2)
2 +

Em (ng1 − n1) (ng2 − n2) . The term h.c. stands for the
complex conjugates of the operators for the Hermitian
Hamiltonian. Here, n1 and n2 (n1, n2 = 0,±1,±2, ...) are
the numbers of excess Cooper pairs in the first and the sec-
ond Cooper pair boxes, and ng1,2 = (Cg1,2Vg1,2 +CpVp)/2e
are the normalized charges induced on the corresponding
qubit by the dc and pulse gate electrodes. The eigenen-
ergies, Ek (k = 0, 1, 2, ...), of the Hamiltonian (1) form
2e-periodic energy bands corresponding to the ground
(k = 0), first excited (k = 1), etc. states of the system.
Ec1 , Ec2 and Em give the characteristic energies of Cooper
pair of the first qubit, Cooper pair charging energy of the
second qubit and the coupling energy, respectively

Ec1,2 =
4e2Cε2,1

2(Cε1Cε2 − C2
m)

,

Em =
4e2Cm

Cε1Cε2 − C2
m

, (2)

where Cε1,2 are the sum of all capacitances connected to
the corresponding Cooper pair box including the coupling
capacitance Cm and e is the electron charge.

If the circuit is fabricated to have the following relation
between the characteristic energies: EJ1,2 ∼ Em < Ec1,2 ,
then one can use a four-level approximation for the de-
scription of the system (|00〉, |01〉, |01〉 and |11〉) around
ng1 = ng2 = 0.5 while other charge states are separated
by large energy gaps. In this basis, the two charge qubits
system behaves as a single four-level system which can be
used as a new basis for the Hamiltonian (1).
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The time evolution of the system density operator ρ̂(t)
can be written as [31–33]

d

dt
ρ̂(t) = − i

�
[Ĥ, ρ̂] − γ

2�2
[Ĥ, [Ĥ, ρ̂]], (3)

where γ is the phase decoherence rate. Equation (3) re-
duces to the ordinary von Neumann equation for the den-
sity operator in the limit γ → 0. The equation with the
similar form has been proposed to describe the intrinsic
decoherence [34]. Under Markov approximations the so-
lution of the master equation can be expressed in terms
of Kraus operators [35] as follows:

ρ̂(t) =
∞∑

m=0

(γt)m

m!
Ĥm exp

(
−iĤt

)
exp

(
−γt

2
Ĥ2

)
ρ̂(0)

× exp
(
−γt

2
Ĥ2

)
exp

(
iĤt

)
Ĥm

=
∞∑

m=0

(γt)m

m!
M̂m(t)ρ̂(0)M̂ †m(t), (4)

where ρ̂(0) is the density operator of the initial state of the
system and M̂m are the Kraus operators which completely
describe the reduced dynamics of the qubits system,

M̂m = Ĥm exp(−iĤt) exp
(
−γt

2
Ĥ2

)
. (5)

Equation (4) can also be written as

ρ(t) = exp
(
−iĤt

)
exp

(
−γt

2
Ĥ2

)
{eŜM tρ̂(0)}

× exp
(
−γt

2
Ĥ2

)
exp

(
iĤt

)

= ρij,lk(t)|ij〉〈lk|. (6)

We define the superoperator ŜM ρ̂(0) = γĤρ̂(0)Ĥ and
choose arbitrary initial state of the two charge qubits.
The notation |ij〉 = |i〉1 ⊗ |j〉2, is used, where |0〉1(2) and
|0〉1(2) are the basis states of the first (second) qubits and
ρij,lk(t) = 〈ij|ρ(t)|lk〉 corresponds the diagonal (ij = lk)
and off-diagonal (ij �= lk) elements of the final state den-
sity matrix ρ(t). From here on, for tractability of nota-
tion and without loss of generality, we denote by ρij(t) =
ρij,ij(t), the probability of finding the two-coupled charge
qubits in the state |ij〉.

3 Creation of maximally entangled
mixed states

We now apply the above results to study the time evolu-
tion of the occupation probabilities with different values
of the system parameters. In pure-state case, there has
been considerable debate over the entanglement proper-
ties of certain types of states [11]. In this paper, we are
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Fig. 2. (Color online) The time evolution of the occupation
probabilities ρij(t), where ρ00(t) (solid curve), ρ01(t) (dashed
curve), ρ10(t) (dot-dashed curve) and ρ11(t) (dotted curve).
The initial state of the system is assumed to be ρ(0) = |00〉〈00|
and the parameters used in these figures are EJ1 = EJ2 = 30
and Em = 6.

interested in the case in which the final state of the cou-
pled charge qubits ρ(t) is a maximally entangled mixed
state [19].

Nakamura et al. [36] investigated the temporal behav-
ior of a Cooper-pair box driven by a strong microwave field
and observed the Rabi oscillations with multi-photon ex-
changes between the two-level system and the microwave
field. Here, the occupation probabilities as functions of the
scaled time λt are schematically shown in Figure 2. Note
that the populations of the four states exist but ρ00(t)
as well as ρ10(t) oscillate between 0 and 1, while ρ01(t)
and ρ11(t) oscillate with smaller amplitudes. It should be
noted that the occupation probabilities results are dras-
tically different when we consider different initial state
settings. To analyze the effect of the system parameters
on the occupation probabilities for the present system we
consider two different cases. One when the the Josephson
energies of Cooper pair are different while the second
case is the strong interaction regime. This will be seen
in Figures 3 and 4. As an example of the creation of the
two-particle maximally entangled state is shown in Fig-
ure 3. The results of this figure are obtained for parameters
EJ1 = 30 µeV, EJ2 = 5 µeV and Em = 6 µeV. The way to
determine experimentally the qubits’ Josephson energies
EJ1 and EJ2 has been described in reference [30].

If the system starts from excited state, ρ(0) =
|0, 0〉 〈0, 0| , we see that the occupation probabilities of the
intermediate states tend to zero at any instant of time and
the Cooper pair system oscillate only between excited and
ground states. If the environment is switched off, i.e. γ
tends to zero, and using equation (6), at some instant
times τ � 5n

λ , (n = 1, 2, 3, ...), we can obtain analyti-
cally the values of the diagonal and off-diagonal elements
of the density matrix as ρ00,00(t) = ρ11,11(t) = 0.5 and
ρ00,11(t) = ρ11,00(t) = ζ �= 0, otherwise ρij,lk(t) = 0.
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Fig. 3. (Color online) The same as Figure 2, but EJ1 =
30 µeV, EJ2 = 5 µeV and Em = 6 µeV.

Fig. 4. (Color online) The same as Figure 2, but EJ1 =
30 µeV, EJ2 = 1 µeV and Em = 60 µeV.

Which means that, the final state takes the form

ρ̂(t) =
1
2
|0, 0〉 〈0, 0|+ ζ(|0, 0〉 〈1, 1| + |1, 1〉 〈0, 0|)

+
1
2
|1, 1〉 〈1, 1| , (7)

i.e. the final state (7) becomes a maximally entangled
mixed state [19]. This entangled state corresponds to the
half-probability peaks in Figure 3 (ζ = 0.13). Depending
on whether Josephson energy of the first qubit is smaller
or larger than the Josephson energy of the second qubit,
the maximally entangled states are created. Similarly, de-
pending on the coupling energy the maximally entangled
state is characterized as having short or long correla-
tion time. Given enough time, the system will therefore
reaches a state where both excited and ground states have
equal occupation probabilities i.e. the coupled-qubit sys-
tem evolves to the maximally entangled mixed state at
the times given by

λt =
nπ√

(EJ1 + EJ2)2 + E2
m/4−√

(EJ1−EJ2)2 + E2
m/4

,

n = ±1,±2,±3, . . . (8)

We turn our attention to consider the case in which both
characteristic energies have different values taking into ac-
count the effect of the coupling energy. For this reason we
have plotted the function ρij(t) against the scaled time λt
in Figure 4. To make a comparison between this case and
the previous one we have to take the values of the other
parameters similar to that of the previous case. In this case
and providing the characteristic energies EJ1 = 30 µeV,
and EJ2 = 6 µeV, we find that the function reduces its
value to be around ≈1 and 0.5 for the excited state while
the ground state probability oscillates between 0 and 0.5.
Furthermore, we realize there is a long period of the inter-
action time in which the probability of the excited state
equals the ground state probability, with perfect symmet-
ric fluctuation pattern around 0.5, see Figure 4. Which
means that, with these setting, we obtained long lived
maximally entangled mixed state (in this case ζ = 0.19).
In the meantime if we exchange the values of the charac-
teristic energies, we observe there is no big change in the
figure shape, except some decreases in the fluctuations
number. It is to be noted that the maximally entangled
state in this case is lived longer compared with signifi-
cantly short time in the previous case (see Figs. 3 and 4).

One might now raise the following notes: taking a
strong coupling regime where the coupling energy is strong
enough, one can obtains maximally entangled mixed states
at some instant times in a periodical manner. But when
the coupling energy between the two qubits is weak, the
period becomes shorter. Also, if the deviation between the
Josephson energies is substantially large, the maximally
entangled states can be generated. It is worth noting that
when the coupling energy tends to zero, our model be-
comes similar to that of a beam splitter model. In such a
case, we cannot obtain maximally entangled states. The
manipulation of the maximally entangled states and the
realization of a fundamental quantum logic gate between
the two qubits has also been discussed in detail [37] by
considering the non-diagonal terms of the density matrix.

The above discussion clearly shows that the maximally
entangled state generation of the two charge qubits de-
pends on both the time evolution, Josephson energies of
both charge qubits and coupling energy. The considera-
tions of experimental observability of the entangling power
discussed in [3] are valid in the context of the present work.

4 Entanglement

Having established the existence of maximally entangled
states ρ(t), in Section 3, now we try to answer the follow-
ing question: how does the entanglement of the two charge
qubits system evolve? To answer this question, one first
needs a formal definition of entanglement. Currently a va-
riety of measures are known for quantifying the degree of
entanglement in a bipartite system [38–44]. A convenient
measure of entanglement for a two-qubit state ρ(t) is the
concurrence Cρ (t) , given by

Cρ (t) = max {0, λ1 − λ2 − λ3 − λ4} , (9)
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Fig. 5. (Color online) The time evolution of the concurrence
as a function of the scaled time λt. The initial state of the
system is assumed to be ρ(0) = |00〉〈00| and the parameters
are EJ1 = 30 µeV, EJ2 = 2 µeV, γ = 0 and different values
of the coupling energy, where Em = 200 µeV (dotted curve),
Em = 60 µeV (dashed curve) and Em = 5 µeV (solid curve).
Regions of the entanglement sudden death are painted in gray.

where λ1 ≥ λ2 ≥ λ3 ≥ λ4. We denote by λi the square
roots of the eigenvalues of ρ (σy ⊗ σy) (ρ)∗ (σy ⊗ σy) , here
σy is the second Pauli matrix and the conjugation oc-
curs in the computational basis (|00〉, |01〉, |10〉, |11〉).
Cρ (t) quantifies the amount of quantum correlation that
is present in the system and can assume values between 0
(only classical correlations) and 1 (maximal entangle-
ment).

In Figure 5, we plot the concurrence as a function
of the scaled time assuming that the two-coupled super-
conducting charge qubits start from their excited states.
The maximum value of the entanglement decreases as the
coupling energy is decreased. As time goes on, the entan-
glement reaches zero value in a periodic way, this period
decreases as the coupling energy decreases. In the uncou-
pled situation each qubit oscillates with its own frequency
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Fig. 6. (Color online) The same as Figure 5 but EJ2 = 5 µeV.

and Cρ (t) = 0. It is interesting to note that, the maximum
entanglement is achieved at specific choices of the inter-
action time i.e. the entanglement content corresponding
to specific choices of the interaction time and large values
of the coupling energy. We therefore consider the ques-
tion of how the coupling energy affect the entanglement
of system. In relation to that discussion, it is useful to ex-
amine the effect of the characteristic energies with fixing
the coupling energy of the two charge qubits that change
their state during the transition. That criterion is related
to, but clearly distinct from, the question of quantifying
how maximum a quantum state is. Also, as can be seen
from the graphs Figures 3 and 5, the entanglement van-
ishes at the time at which the population of the symmetric
state is maximal.

Put differently, with a small difference between the
characteristic energies of the Cooper pairs (Josephson en-
ergy of the second qubit, EJ2 = 5 µeV) and still kept
the parameter values of Figure 5, we show that the entan-
glement features are visibly worsened, as in this regime
oscillations are faster than the previous case (see Fig. 6)
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Fig. 7. (Color online) The same as Figure 6 but Em = 200 µ
and different values of the decoherence parameter, where γ =
0.01 (solid curve), γ = 0.1 (dotted curve) and γ = 0.8 (dotted-
dashed curve).

in which big difference between the characteristic energies
of both qubits are considered. One has still zero entan-
glement due to the time development, but with a short
period of the interaction time which is roughly given by
λt ≈ 2nπ

3 , (n = 1, 2, 3, . . .). Similar to the previous case,
one will have a very small amount of entanglement when
the coupling energy decreases and this amount disappear
completely when the coupling energy decreases further.
Indeed, the comparison of plots Figures 5 and 6, demon-
strates that the entanglement in both cases has some-
what similar behavior corresponding to different values
of coupling energy. The deviation value of the Josephson
energies of the Cooper pairs effect on the entanglement is
particularly pronounced as this deviation is much bigger.

Conventionally, maximally entangled state emerge
from the coupling of the two qubits by a small island
overlapping both Cooper pair boxes, i.e. two-coupled su-
perconducting charge qubits. As such, the phenomenon is
the result of many-particle dynamics, often described by
a simple interaction model. In the single-qubit case novel
features appear which are due to the coherent microscopic
dynamics. Our study allows us to identify the dependence
of these features on different parameters of the system,
thereby giving us insight into how maximally entangled
state and hence maximum entanglement arise from dy-
namics in this particular coupling process.

The quantum features of many systems decay uni-
formly as the result of decoherence and much effort has
been directed to extend the coherence time of these qubits.
However, it has been shown that under particular circum-
stances where there is even only a partial loss of coherence
of each qubit, entanglement can be suddenly and com-
pletely lost [13,14].

This has motivated us to consider the question of
how decoherence effects the scale of entanglement in the
present system. The decoherence time due to the coupling
to the vacuum via the probe junction can be estimated
to be roughly 100 ns at the resonant condition. For the
most of the experimental devices [7], this probing time
restricted the upper limit of the decoherence time, since
the probe junction attached to the box had a sampling

time of typically 8 ns. Once, the environment has been
switched on, i.e., γ �= 0, it is very clear that the decoher-
ence plays a usual role in destroying the entanglement. In
this case and for different values of the decoherence pa-
rameter γ, we can see from Figure 7 that after the onset
of the interaction the entanglement function increases to
reach its maximum showing strong entanglement. How-
ever its value decreases after a short period of the inter-
action time to reach its minimum. The function starts to
increase its value again however with lower local maximum
values showing a strong decay as time goes on. It is inter-
esting to remark that decoherence due to normal decay is
often said to be the most efficient effect in physics. Which
means that, the entanglement increases rapidly, then ap-
proaches to a minimum value in a periodic manner. Also,
from numerical results we note that with the increase of
the parameter γ, a rapid decrease of the entanglement
(entanglement sudden death) is shown [35].

Since the discovery of entangled sudden death [25,35],
a large number of instances of this surprising effect have
been identified in the theoretical literature [45–48]. In gen-
eral, decay takes infinitely long, so one can wait any length
of time. However, if the entanglement reaches zero in a
finite time [25,35] the game is over. Thereafter no distil-
lation process exists that will recover any useful feature
of entangled quantum joint coherence for use in quantum
computing or communication [49]. These results should
mark an important consideration in the design and opera-
tion of future quantum information networks. Also, prop-
erties of such entanglement decay depends on the coupling
energy and qubits Josephson energies. Even if achieving
the maximally entangled state is not possible in the pres-
ence of the decoherence, one can argue that finding a
maximally entangled state can, under certain conditions,
be achieved for a short interaction time. It is also worth
noting here that we have used the simple model of a two-
Cooper pair box problem, which represents a proper phys-
ical system that can be used as a qubit. This system is of
a great interest because it offers the possibility of scaling
to a large number of interacting qubits.

5 Conclusion

In the important context of quantum state engineering
and characterization, we have studied the entanglement
properties of the special class of two-coupled supercon-
ducting charge qubits. Clear physical interpretations for
the maximally entangled state generation and entangle-
ment found for certain parameter regimes of the system
have been provided. In a strong coupling regime, two dif-
ferent types of maximally entangled states of the system
have been created. This helps the comprehension of the
quantitative results achieved by the use of the concur-
rence. Moreover, we find peculiar entanglement charac-
teristics which are unique to this system, and which we
trace back to the interplay of the various time scales of
the dynamics. Our results suggest that the maximally en-
tangled mixed state is generic in different situations for
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the coupled-charge qubits system, and that developing
entanglement theory under other sorts of restrictions is
a promising direction for further study. In a more gen-
eral context, our results provide further insight into the
coupled dynamics of superconducting charge qubits in the
spirit of the experimental realization [3,7,29] and may pro-
vide a useful maximally entangled states source in the ex-
ploration of various quantum-information processing.
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